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Abstract. A measurement of the longitudinal beam profile of a relativistic charged particle beam 
is an important tool in modern accelerators. For bunch lengths in the range of picoseconds, such 
measurements can be performed by means of a streak camera. Shorter bunches usually require 
special techniques. In this paper we describe a novel technique that allows obtaining properties 
of a bunch of charged particles through measurement of the fluctuations of incoherent radiation 
from the bunch. Due to shot-noise fluctuations in the longitudinal beam density, this incoherent 
radiation has a spectrum, which consists of random spikes with width inversely proportional to 
the bunch length. The convolution of the beam current can also be obtained from the radiation 
spectrum. After the convolution function is found, the phase retrieval technique can be applied to 
recover the bunch shape. This technique has been used to analyze the shape of the 4-ps-long 
bunches at the Advanced Photon Source self-amplified spontaneous emission free-electron laser 
(SASE FEL) experiment. 

INTRODUCTION 

Recent developments in physics and technology open an exciting world of very 
short subpicosecond bunches. The length of electron bunches that are going to be used 
in the next linear colliders is of the order of 1 picosecond [1]. The projects of X-ray 
free-electron lasers (FELs) require even shorter bunches, down to 100 femtoseconds 
or less. The Linac Coherent Light Source (LCLS) [2] under construction at SLAC 
utilizes electron bunches as short as 80 femtoseconds to produce self-amplified 
spontaneous emission (SASE) radiation in an FEL. The new Subpicosecond Pulse 
Particle Source (SPPS) [3] already can produce electron pulses as short as 30 
femtoseconds rms. 

The production and tuning of these short bunches is crucial to the performance of 
these colliders and FELs, but the measurement of such ultrashort bunches is an 
interesting challenge itself. For bunch lengths in the range of picoseconds, such 
measurements can be performed with a streak camera. But shorter bunches require 
special techniques. They include high-power rf transverse deflecting structures that 
streak the beam in the accelerator allowing the bunch length to be observed on a 
profile monitor [4,5]. Electro-optic crystal diagnostics use the electric field of the 
electron bunch to modulate the light emitted by high-bandwidth, femtosecond visible 
lasers thereby allowing one to recover the bunch length [6]. Coherent synchrotron 
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radiation from dipole magnets can also be detected in a terahertz band at wavelengths 
comparable to the bunch length [7]. 

In this paper we describe a method proposed previously [8, 9, 10], which allows 
obtaining properties of a bunch of charged particles through measurement of the 
fluctuations of incoherent emission from the bunch. Emission can be produced by any 
kind of incoherent radiation: generated in a bend or wiggler, transition or Cerenkov 
radiation, etc. And, unlike the techniques using coherent radiation, this method does 
not set any conditions on the bandwidth of the radiation. These conditions are rather 
set by available detectors. 

This paper begins with a theoretical description of the method. Then it describes the 
instrumentation used for this experiment. The rest of the paper is devoted to the 
experimental results on single-shot spectral measurements and on recovery of the 
bunch profile. Simulation results are also presented to check and confirm the 
technique used. 

THEORY 

Let us consider a microscopic picture of the bunch, where each particle radiates an 
electromagnetic pulse with the electric field given by a function e(t). (The specific 
expression for this function depends on how the radiation was generated: in the dipole, 
or in the wiggler, etc.) The total radiated field E(t) of all particles is 
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where N is the total number of particles in the bunch and tk defines the longitudinal 
position of k-th particle within the bunch. We assume that tk are random numbers, with 
the probability to find tk between t and t+dt equal to f(t)dt, where f(t) is the bunch 
distribution function normalized to 1. 

The spectral properties of the radiation can be obtained from the Fourier transform 
of the radiated field: 
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Averaging this equation, we find 
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where )(ˆ ωf  is the Fourier transform of the distribution function, and we used the 

approximation N-1≈N. The first term in Equation (2) is incoherent radiation 
proportional to the number of particles in the bunch. The second term is the coherent 
radiation that scales quadratically with N. The coherent radiation term carries 
information about the distribution function of the beam but only at low frequencies of 

the order of 1−≅ tσω , where )(ˆ ωf  is not zero. At high frequencies 1)(ˆ 2
<<ωfN , 

and the coherent radiation is negligible in comparison with the incoherent one. 
To illustrate the difference between coherent and incoherent radiation intensities, 

let us consider a numerical example for the case of a Gaussian beam with σt=1 ps and 
total charge of 1 nC (approximately 1010 electrons). The Gaussian distribution 
function and its Fourier transform have the form: 
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At 1 THz frequency, where ωσt≈1, the coherent term in Equation (2) is about 1010 
times stronger. At ωσt=10, the coherent term is 1034 times weaker. 

However, the original, not averaged expression for the spectral power (Equation 
(1)) shows that the properties of the radiation, even at high frequencies, carry 
information about the distribution function. Considered separately, each term of the 
summation )( mk ttie −ω  oscillates as a function of frequency with the period ∆ω=2π/(tk-
tm)~2π/σt. Because of the random distribution of particles in the bunch, the sum in 
Equation (1) fluctuates randomly as a function of frequency ω, and statistical 
properties of these fluctuations depend on the properties of the distribution function of 
the bunch. 

To obtain quantitative characteristics of the radiation, let us calculate the average 
value of the product )()( ωω ′PP , which later can be used for calculation of the power 
spectrum autocorrelation: 
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The N4 terms in this summation can be placed in 15 different classes (see Ref. 11). For 
the incoherent radiation, only two classes are important: k=m, p=q, k≠p and k=q, 
m=p, k≠m. Thus it can be found that 
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We can now define the following second-order correlation function: 
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and, using Equations (2) and (4), it follows that 
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This important equation relates the spectrum autocorrelation function and the Fourier 
transform of the bunch shape. It can be used to find the bunch length. 

Another useful quantity was introduced previously [9]. It is the Fourier transform of 
the spectrum 
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It can be shown, that the variance, 
2
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convolution function of the distribution function f(t) 
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Strictly speaking, knowledge of the spectral function )(ˆ ωf  (or convolution 

function) does not allow a unique restoration of f(t), because the information about the 
phase of )(ˆ ωf is lost. However, as has been shown [12], using a phase-retrieval 

technique, one can recover the beam profile in many practical cases. This technique 
will be discussed later. 

The above consideration assumes a filament beam, with a negligibly small 
transverse size. In this case, the fluctuations of the spectral intensity P(ω) are 100%, 
and the correlation function g in Equation (5) varies from 1 at Ω=0 to 1/2 at Ω→∞. 
This regime requires that the transverse beam size be smaller than the transverse 
coherence size of the radiation, which is of the order of λ/2πσθ, where σθ is the 
angular spread of the radiation. In the opposite case, the fluctuations become less 
pronounced. 

We also used a classical description of the radiation process and neglected quantum 
effects. This approach is justified if the quantum fluctuations of the number of radiated 
photons are negligible. One can derive the condition for the beam intensity when this 
requirement is met. If the source of the radiation is synchrotron light from a dipole, the 
number of photons that reach the detector in the frequency interval ∆ω (they are 
radiated from (1/γ)(ωc/ω)1/3 radians of the beam trajectory, where ωc is the critical 
frequency of the synchrotron radiation) can be estimated as [13] 
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where α is the fine structure constant, and Ne is the number of particles in the bunch. 
Assuming ∆ω~σt

-1 and visible light range, we can rewrite this equation as 
)/(103 5

Aph IIn ⋅≈ , where I is the peak current in the beam and IA=17 kA is the 
Alfven current. If the number of photons is much larger than one, the quantum effects 
can be neglected. 

For wiggler radiation, the estimate for the number of radiated photons is  
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where K is the wiggler parameter and M is the number of periods in the wiggler. 
If condition 1>>phn  is not met, quantum fluctuations superimpose on the 

random fluctuations described above. However, the information about the pulse shape 
is still present in the measured signal. Although a larger statistics would be required to 
suppress the additional noise introduced by quantum fluctuations. 

Finally, we would like to emphasize that measurements of the beam profile using 
spectral fluctuations can be done in one shot, if the width of the measured spectrum is 
wide enough. In this case, the averaging of different quantities can be done over the 
spectrum, rather than over multiple shots. 

MEASUREMENTS 

Recently, a number of measurements were reported that confirm the fluctuational 
nature of the spontaneous incoherent radiation. Most of these measurements were 
conducted at FEL-related facilities. First measurements of the single-shot spectra of 
the undulator spontaneous emission with resolution sufficient to demonstrate 100% 
fluctuations of intensity were performed at ATF/BNL [14]. Bunch length was 
extracted from the fluctuations, and emittance was estimated in that experiment. More 
extensive analysis of the spectral fluctuations was conducted at the Low-Energy 
Undulator Test Line (LEUTL) at the Advanced Photon Source at ANL [15]. Later, 
there were a number of reports demonstrating spectral fluctuations of synchrotron 
[16], Cerenkov [17], and transition radiation [18]. 

LEUTL Facility Description 

In this part, we will describe in detail the results of single-shot spectrum 
measurements obtained at LEUTL.   

The LEUTL system was built as an extension of the existing APS linac (Figure 1). 
It consists of a high-brightness photocathode rf electron gun coupled to the 650 MeV 
APS linac and a long undulator system. The gun is driven by a picosecond Nd:glass 
laser and can generate a few-picosecond electron pulses at 6 Hz frequency. A bunch 
compressor is installed after two accelerating sections of the linac to further reduce the 
electron bunch length. It is capable of compressing the beam by a factor of ten. The 
undulator system consists of nine identical 2.4-m-long sections separated by drift 
spaces where visible light diagnostics (VLD) stations are installed. Each VLD can 
deflect the undulator light and send it to the end station located at the downstream end 
of the undulator line. 



 
Figure 1. Schematic of the LEUTL system.  

 
All spectral measurements reported in this paper have been obtained with a high-

resolution spectrometer located at the downstream end of the undulator line in the end 
station. A mirror at each diagnostic station could direct the SASE light towards the 
spectrometer through a hole in the shielding wall, thus allowing one to measure 
spectral characteristics of the SASE light at different longitudinal locations along the 
undulator line. 

A schematic of the spectrometer is shown in Figure 2. It utilizes a Paschen-Runge 
mount. This design was chosen because of its great flexibility: it provides 
independence on the angle of the incoming light, it can be tuned for wide range of 
wavelengths, and it is easy to modify. The spectrometer consists of three main 
elements all located on the Rowland circle: a vertical entrance slit, a spherical grating, 
and a CCD camera. The light coming from the undulator hall is focused on the 
entrance slit with a concave mirror. All optical elements are reflective with metal 
coatings. This allows the system to work over a wide range of wavelengths. The gated 
CCD camera can measure the radiation of each electron bunch separately. To reduce 
the dark current and to improve the signal-to-noise ratio, the CCD camera is cooled.  

The spectrometer was calibrated with hollow cathode discharge lamps, and the 
designed resolution was checked on different wavelengths. The main parameters of 
the spectrometer are presented in Table 1. 



 
Figure 2. A top view of the Paschen-Runge-type spectrometer for the analysis of the SASE FEL light. 

 
Table 1. Main parameters of the high-resolution spectrometer 

Grooves/mm 600 
Curvature radius [mm] 1000 

 
Grating 

Blaze wavelength [nm] 482 
Number of pixels 1100×330 CCD camera 
Pixel size [µm] 24 

Concave mirror curvature radius [mm] 4000 
Spectral resolution [Å] 0.4 
Bandpass [nm] 44 
Resolving power at 530 nm 10000 
Wavelength range [nm] 250 – 1100 

 

Spectrum measurements and bunch length extraction 

Measurement of the typical single-shot spectrum is shown in Figure 3 (top). The 
spectrum is composed of spikes of random amplitude and frequency that have a 
characteristic width ∆ω ~1/σt and intensity fluctuation of almost 100%. The shape of 
the individual spectra changes randomly from shot to shot, but the average of many 
shots approaches the familiar wiggler spectrum, Figure 3 (bottom).  

To illustrate the spike width dependence on the bunch length, the bunch was 
compressed by the bunch compressor. Figure 4 presents the spectrum radiated by this 
much shorter bunch. 



 
Figure 3. Top – examples of typical single-shot spectrum, bottom – spectrum averaged over 100 single 
shots. 

 
Figure 4. Single-shot spectrum for a very short bunch. The bunch was compressed by about a factor of 
5 compared to the previous figure. 

 
To extract the bunch length from the spectral data, Equation (5) for the second-

order spectrum correlation is used. The normalized correlation of the spectral intensity 
averaged over many shots was calculated from the spectrum measurements: 
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where )( iP ω  is the signal in the i-th CCD channel and n is the shift in channels. The 
correlation averaged over 100 shots is plotted in Figure 5. To illustrate how the 
instrument resolution can affect the measurements, different sizes of the entrance slit 
of the spectrometer were used. 

For the ideal case of a zero-emittance beam and a diagnostics with sufficient 
spectral resolution, 100% fluctuation of the spectral intensity will occur. However, 
when the beam size is large or the detector spectral resolution is poor, the spectrum 
will be similar to a spectrum emitted by several independent sources. The fluctuation 
level will be reduced, and a nonzero pedestal will appear in the spectrum. 

In general, to achieve the best resolution, the entrance slit of the spectrometer 
should be less than the pixel size of the detector. But in our case the radiation intensity 
was not enough to work with slit openings less than 25 µm. Low resolution can lead to 
a situation where one detector channel sees more than one spike, which hampers the 
spike width measurements. The asymptotic level of the correlation curves at large n 
shows how large the pedestal was; for 100% intensity fluctuations, this level should be 
equal to 0.5 (see Equation (5)). The value of this level can be used to characterize how 
many independent modes contributed to the radiation measured in one channel. To be 
able to directly apply Equation (5), the curve with the smallest pedestal should be 
chosen.  

 
Figure 5. Spectrum autocorreltation for different entrance slit sizes. This plot illustrates how the 
instrument resolution can affect the measurements. 

 
The spike width on half maximum according to Figure 5 is about two pixels. The 

frequency step corresponding to one pixel is 11104.2 ⋅=δω  rad/s. Therefore, assuming 
the beam to be Gaussian and using Equations (3) and (5), the sigma of the Gaussian 
distribution is  
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This gives the FWHM length of the bunch to be equal to 4.5 ps. 
The accuracy of determination of the spike width is not so great because its size is 

only a few pixels. This means the resolution of the spectrometer is not enough for 
these bunch lengths. But the shorter the bunch, the wider the spikes, and the higher the 
accuracy, see, for example, Figure 4.  

Calculation of the convolution function of the bunch profile 

As mentioned before, measurements of the spectral intensity fluctuations can be 
used not only to determine the bunch length but also to recover a longitudinal bunch 
profile. It has been shown [9] that the variance of the Fourier transform of the 
spectrum is proportional to the convolution function of the beam current. After the 
convolution function is found, a phase retrieval technique can be used to recover the 
shape of the pulse in many practical cases. These two steps are described below. 

First, to calculate the convolution of the bunch current, we calculate the Fourier 
transform of the measured spectrum for measurement n: 

 ∑
=

=
ch

ch

N

m

Nimk
nmnk ePG

1

/2
,,

π , 

where m  and Nch is the channel number and the number of channels in the detector 
(CCD), respectively, and P is the detector signal. After accumulation of pN  number 
of pulses large enough for statistical analysis, the variance of the Fourier transformed 
spectrum is calculated the following way: 
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It can be described in other words as the average deviation of the signal in the k-th 
channel from its average. As was mentioned above (see Equation (6)), the quantity kD  
gives the convolution function of the particle density in the bunch averaged over pN  
bunches. 

Computer simulations have been performed to check this statement and confirmed 
it for bunches with Gaussian and step-function profiles. Figure 6 shows results of the 
simulation. 



 
Figure 6. Convolutions of longitudinal bunch shape extracted from simulated single-shot spectra for 
Gaussian (red) and step-function (black) distributions. The number of particles used for the simulations 
was 100. The number of spectra for averaging was 200. Solid lines are analytical convolutions. 

 

 
Figure 7. Convolution of longitudinal particle density calculated using measured spectra. Solid line is a 
fitted Gaussian function. 

 
Figure 7 represents the convolution function of the longitudinal bunch distribution 

extracted from real spectral measurements. The number of spectrum measurements 
used for analysis is 100. This plot can also be used to determine the bunch length. If 



we assume that the bunch has a Gaussian shape, then its convolution is also a 
Gaussian with tσσ ⋅= 2 . A fitted Gaussian function is also shown in Figure 7 as a 
solid line. This plot gives the bunch length equal to psb 8.1=τ . 

As mentioned above, the convolution function of the bunch profile does not allow 
for a strict restoration of the bunch profile itself. But, in practice, real beams often 
look like some nonsymmetric combination of flattop and “Gaussian-like” functions. 
For these cases, using the Gaussian function alone to fit the convolution gives a good 
enough answer for the bunch length.  

Reconstruction of the bunch shape from the convolution function 

If the measurement of the bunch length using the convolution techniques described 
above does not provide enough information, one can apply a more sophisticated 
analysis of the convolution function. It is possible to extract both the amplitude and 
the phase information of the radiation source by applying a Kramers-Kronig relation 
to the convolution function. This technique of phase extraction was well developed in 
the optics of solids for the problem of reflectivity. We will briefly describe the 
technique following Ref. [12]. 

We denote the longitudinal particle density as )(zS  and its Fourier transform as 
)(ωS  and write it in the following form 

 )()()( ωψωρω ieS = . (7) 
Here )(ωρ  corresponds to the Fourier transform of our convolution function. Phase ψ 
can be extracted using the expression 
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where ψm is the minimal phase and the ωj’s are the zeros of S(ω) in the upper half of 
the complex frequency plane. If S(ω) has no zeros, the contribution from ψBlaschke(ω) 
equals zero, and the expression above gives the minimal phase. This minimal phase is 
a good approximation to the actual phase in cases where the bunch density has no 
nearby zeros in the upper half of the complex frequency plane. The final expression 
for calculating the minimal phase is  
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Introduction of ρ(ω) in the numerator of the integral does not change the principal 
value of the integral and removes the singularity at x=ω. The density distribution 
function can now be obtained from the inverse Fourier transform of Equation (7): 
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Figure 8 shows the simulated results of applying the above technique to restore 

different bunch shapes. The solid line is the original bunch shape, and the dots are 
distribution functions calculated from the convolution function with minimal phase 



approximation. One can see that, for some bunch shapes, this technique gives really 
good agreement, while for others it is not as good. 

Calculation of longitudinal distribution for different bunches

Time (arb. units)

Calculated shape
Exact shape

 
Figure 8. Simulation: exact longitudinal bunch distribution function compared with that calculated 
from the convolution function. First – sum of three Gaussian functions; second – step function 

combined with Gaussians; third – sum of three Gaussian-like functions 
3.1

3.1

2σ⋅
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Next, the technique described above is applied to the measured convolution 

function of the longitudinal bunch distribution (Figure 7). One can see that the plot of 
the convolution function is still very noisy despite analyzing 100 single shots. This 
noise produces high-frequency content in the Fourier transformation. Therefore, 
before taking the Fourier transform of the convolution function, it has been smoothed 
by filtering out the high frequencies. 

Results of calculations of the bunch shape for two different measurements (two sets 
of 100 single-shot spectra) are presented in Figure 9. They were taken on the same day 
with an interval of several hours. The electron beam parameters were supposed to be 
the same, but small variations were possible. The two curves demonstrate almost the 
same profile of the beam with a FWHM length of approximately 4 ps. 

 



 
Figure 9. Bunch shape calculated from two different sets of measurements. The beam parameters were 
approximately the same, and the calculations show similar bunch profile for both measurements. 

CONCLUSIONS 

A technique for recovering a longitudinal bunch profile from spectral fluctuations 
of incoherent radiation has been implemented, and a bunch profile of a relatively short 
4-ps beam has been measured. Although we used synchrotron radiation above, the 
nature of the radiation is not important, it can be transition radiation, Cerenkov, etc. 
Typically, averaging over many (of the order of 102) single shots is required, however 
a modification of the method is possible in which one can perform averaging over 
wide spectral intervals in a single pulse.  

To reconstruct the bunch shape from the convolution function we used the 
technique suggested in Ref. [12], but we used a different approach to build the 
convolution. Using spectrum fluctuations to construct the convolution allows us to 
avoid measuring the spectrum of coherent far infrared radiation of the bunch and 
making any assumptions about the asymptotic behavior of this spectrum. 

An important feature of the method is that it can be used for bunches with lengths 
varying from a centimeter to tens of microns. However, there are several important 
conditions for this technique. In order to be able to measure a bunch of length σt, the 
spectral resolution of the spectrometer should be better than 1/σt. Also, the spectral 
width of the radiation and the spectrometer must be much larger than the inverse 
bunch length. For example, Figure 4 presents the situation when the radiation 



bandwidth (wiggler radiation) is not large enough; therefore one can observe only a 
few spectral spikes. 
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